Folding pathway mediated by an intramolecular chaperone. The inhibitory and chaperone functions of the subtilisin propeptide are not obligatorily linked.

نویسندگان

  • X Fu
  • M Inouye
  • U Shinde
چکیده

The subtilisin propeptide functions as an intramolecular chaperone (IMC) that facilitates correct folding of the catalytic domain while acting like a competitive inhibitor of proteolytic activity. Upon completion of folding, subtilisin initiates IMC degradation to complete precursor maturation. Existing data suggest that the chaperone and inhibitory functions of the subtilisin IMC domain are interdependent during folding. Based on x-ray structure of the IMC-subtilisin complex, we introduce a point mutation (E112A) to disrupt three hydrogen bonds that stabilize the interface between the protease and its IMC domain. This mutation within subtilisin does not alter the folding kinetics but dramatically slows down autoprocessing of the IMC domain. Inhibition of E112A-subtilisin activity by the IMC added in trans is 35-fold weaker than wild-type subtilisin. Although the IMC domain displays substantial loss of inhibitory function, its ability to chaperone E112A-subtilisin folding remains intact. Our results show that (i) the chaperone activity of the IMC domain is not obligatorily linked with its ability to bind with and inhibit active subtilisin; (ii) degradation and not autoprocessing of the IMC domain is the rate-limiting step in precursor maturation; and (iii) the Glu(112) residue within the IMC-subtilisin interface is not crucial for initiating folding but is important in maintaining the IMC structure capable of binding subtilisin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four residues of propeptide are essential for precursor folding of nattokinase.

Subtilisin propeptide functions as an intramolecular chaperone that guides precursor folding. Nattokinase, a member of subtilisin family, is synthesized as a precursor consisting of a signal peptide, a propeptide, and a subtilisin domain, and the mechanism of its folding remains to be understood. In this study, the essential residues of nattokinase propeptide which contribute to precursor foldi...

متن کامل

Protein Folding Mediated by an Intramolecular Chaperone: The Energy Landscape for Unimolecular Pro-Subtilisin E Maturation

Efficient and precise assembly of polypeptides into native functional states is critical for normal cellular processes. Understanding how a specific structure is encoded in the polypeptide sequence and what drives the structural progression to the native state is essential to deciphering the folding problem. Several prokaryotic and eukaryotic proteins require their propeptide-domains to functio...

متن کامل

Co-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli

Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....

متن کامل

Role of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis

Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...

متن کامل

Generation of a Functionally Distinct Rhizopus oryzae Lipase through Protein Folding Memory

Rhizopus oryzae lipase (ROL) has a propeptide at its N-terminus that functions as an intramolecular chaperone and facilitates the folding of mature ROL (mROL). In this study, we successfully generated a functionally distinct imprinted mROL (mROLimp) through protein folding memory using a mutated propeptide. The mutated propeptide left its structural memory on mROL and produced mROLimp that exhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 22  شماره 

صفحات  -

تاریخ انتشار 2000